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S U M M A R Y  
The principle of duality for a wide class of distributed parameter systems is developed in this paper. The necessary 
and sufficient conditions for the primal control problem are utilized to derive the dual and converse dual theorems of 
the dual problem. An example of the temperature variation in a slab is given to show the application of the theory. 

1. Introduction 

A number of problems in the engineering field may be alternatively solved by using a duality 
principle. It is well known that the solution of either a primal problem or a dual problem can be 
solved from the solution of the other. It is sometimes computationally convenient to solve the 
dual problem. Principles of duality in lumped systems have been studied extensively [1, 2, 3] ; 
however, the dual theory in distributed parameter systems has not been explored in the litera- 
ture. It is the purpose of this paper to derive the dual and converse dual theorems for the 
optimum control of a wide class of distributed parameter systems. To complete the derivations 
of theorems necessary and sufficient conditions for the primal control problem are also in- 
cluded. The background material of relevance for the derivation can be found in [-2, 4, 5]. 

2. Notations and Assumptions 

F(x(T,  y), T),fo(t, y, x(t, y), xy~(t, y), u(t, y)), and H(t, y, x(t, y), Xy~(t, y), u(t, y), 2(t, y)) are 
scalar functions with continuous derivatives up to and including the second order with 
respect to each of its arguments, f(t, y, x(t, y), xy~(t, y), u(t, y)) and h(t, y, x(t, y), u(t, y)) are, 
respectively, n- and /-dimensional vector functions with continuous derivatives up to and 
including the second order, x, u, 2, p, 4, r/, and z are, respectively, n-, r-, n-, l-, n-, r-, and/-dimen- 
sional functions of t and y, where y is an m-dimensional spatial coordinate vector belonging 
to a region f2 and 8f2 denotes the boundary of f2. u is required to have piecewise continuous 
first and second derivatives for t ~ [to, T] and y e ~ (the closure of f2). x and 2 are continuous in 
t e [to, T] and y e ~. x,, 2,  p, 4, r/, and z are continuous functions of t and y except possibly for 
values of t and y corresponding to points of discontinuity of u. The superscript T for (.)r 
denotes the transpose of(" ) and subscripts denote partial derivatives. Hx and H, are the gradient 
vectors of H with respect to x and u, respectively. Similar notations are applied to scalar func- 
tions of F andfo, h~ and h, (orfx andf,) are the Jacobian matrices of h (or f )  with respect to x 
and u, respectively. The notation xy~(t, y)=Skx(t,  y)/Oy k indicates all possible derivatives 

8x 8x 8x 8 kl+k2+''+kmx(t,y) 

8yl  ~Y2 "" Oym k~ k~ k~ , ' '" . . . .  ' 8yl @2 ...SYm 

where k= kl + k2 +. . .  + kin. 
(hu p)x mean The following functions x~, H~y~,  and T 

Qx 8 8F ~ 7 8 T 
8~' 8x L~yfi {-_-/ ~-} |  and 8x (hu p)' respectively. 
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The vector p > 0 means that all its components are positive, p > 0 means that all the compo- 
nents of p are non-negative and at least one component is positive. Several examples of nota- 
tions forx = (xl, x2), u=(ut, u2), Y= (Yl, Y2), h=(ha, he, h3), p =  (pl, P2, P3), ~=(~t ,  ~2), and 
t/= (th,//2) are illustrated as follows : 

02X1 02Xl 0 2 X 1  02X2 02X2 02X2 
(1)xr~givessixterms 8y 2 , Oy2,0yiOyz, Oy2, 0y22 , and 8yaOye" 

OH 

o t ~ )  

=c01.( ~ D~ , 
k os 

OH 

k aye) 

(3)H~'2Y~'=~y 2 g ~ - x ~ -  = 

= col (02x ,  ~ 

a t ay~)A 
0 2 [ O H ]  

Oyl a t~ Oy~J J 

+ 

OH OH OH OH / 
~ ~ �9 o(~x"/ o/Qfi o(~xA o(-~2"~ 

\Oyl OY2) tOyS] t ay~ ) tOy~2) l 

] 1 (a~  A + Oy,Oye 1 ~ ,  ~ ' 

,2[ H 1 + Oye o (~x2~ 
k Oy~; 

OyiOy2 ;[ ~ 2  " 

I   21bl 
gxt Ox~l r (41(n~,~,~) ~r = a:e, o~2 ] 

~x2 axe A 

where ~ f l  and ~ 2  are the components of the column vector in example 3. 

(5) [(cSx)Hx,2y ] = fix) - -  - = ~ 0y 1 

o \ayU J o \ aye) J 

-I- ~Ys (axe) OYl 0 \ oy~ )J 0 \OylOY2] 

+ ~ (axl) aye o \~Ty~JJ o \ Oy~/ 

\OYlOY2] 
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(6) It follows from example 5 that H~,~ y = 0 at the boundary of (y,, Y2) and t = T means that 
the following six terms 

8 OH a OH a OH a OH a OH 

and 

8y, 8 (~2x~ '  ay, (~x2~ '  ay 2 ( ~ x 2 ~ '  ay2 (~2x,'~' ay2 ~82x2"~ ' 
\ ayU a a a a - \ 8y~/  kay,aye) \ ay~/  \ 0 ~ 2 )  

8 OH 

k@,ayd 

are equal to zero at the boundary of (y,,  Y2) and t = T. 

Fahl ah 2 ah3-][f,]}[~p~] [@1 ap,] 
a lau, au, I :lax, / (7) (huTp)~ = ~ lah, ah~ ahq p~ I ap~ ap~ / 

Lau~ ~ au~_l Lax, ax~_l 
where 

ahl 8h2 ah 3 
p , = ~ u i p t + ~ u i P Z + ~ u i P 3 ,  i = 1 , 2 .  

3. Statement of Primal Problem P 

Find the optimum control u* (t, y) so as to minimize the functional 

Jp= f aF(x(T, y), T)df2 + f t~ .f fo[t, y, x(t, y), xrk(t, y), u(t, y)]df2dt (3.1) 

subject to the constraints 

xt(t, y) =f i t ,  y, x(t, y), xy~(t, y), u(t, y)] in Q (3.2) 

hi(t,y,x(t,y),u(t,y))<=O , i =  1, 2, . . . , l  (3.3) 

with the initial and boundary conditions 

X(to, y), x(t, Y)lm, xr(t, y)lo~ .... , xyk-~(t, Y)loo (3.4) 

specified at to and aO, where Q = (to, T] x Q ; f2 is an open set in R m (m-dimensional Euclidean 
space) ; the terminal time T and the spatial domain f2 are fixed. 

Let the Problem P with condition (3.3) being deleted be called Problem P'. We shall first 
obtain the necessary optimality for Problem P'. Then, we shall see how the results are modified 
when the inequality constraints (3.3) are added. 

4. Necessary Conditions for Problem P 

Define a function H by 

H(t, y, x(t, y), xrk(t , y), u(t, y), 2(t, y ) )=  

=fo(t ,  y, x(t, y), x~(t, y), u(t, y), 2(t, y) 
+).r(t,  y)f(t, y, x(t, y), Xrk(t, y), u(t, y) ) (4.1) 

and consider the first order variation in fix, 8(xrk), and bu. Using the standard variational 
technique results in the following Lemma 1. 
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Lemma 1 [4]: 
continuous vector function 2 (t, y) such that 

xt = H~. = f  

~, = - ~ x - ( - 1 ) k / - / x , ~ , ~  

F~ = 2 ( T , y )  at t = T  

H, = 0 

H~,ky~-~=0 at y=Og2 and t = T .  

M. C. Y. Kuo 

I f  (x*, u*) is a pair of  extremal solutions of  Problem P', then there exists a 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6). 

In the derivation of Lemma 1 the following equality has been utilized [4]. 

(6xy~)r(Hx,~) = A +  ( -  1) k-1 {(6x)(Hx, ky~-1)} + (-- 1)k(6x)T(H~,~ y~) (4.7) 

where 

A = ~ {(ax),~-l~/x,,}- {(ax),,_2F/~,,,} 

+ { ( a x ) , ~ _ 3 H ~ , ~ , 2 } . . . + ( _ l ) k _  2 0 r { (&) ,H~,~ ,~  ~} (4.8) 

and 

f" A e a e t  = [(&),~_,  H~,~ - . . . ]  dt = 0 (4.9) 
t0 ~Q to 

for fixed 

x,(t,  Y)10a, xy~(t, Y)le~, ..., x,~-i (t, Y)lo~. 

Now, we shall see how the results developed in Lemma 1 are modified if inequality constraints 
(3.3) are considered. 

Let the extremal control u* (t, y) and the corresponding x* (t, y) be such that 

hi(t , y, x*, u*) = 0 i=  1, 2, ..., 

h i ( t , y , x* ,u* )<O i=c~+1, e + 2  . . . . .  l. (4.10) 

We shall assume that the matrix 

F 0hi ~?hl 1 

h~ | 0 h ~  ~h~ 

[_ ~?ul "'" 0u~ 

has maximum rank at x = x* (t, y) and u = u* (t, y). Thus, for each t and y there exists a neigh- 
borhood of point (x* (t, y), u* (t, y)) in R" x R ~ such that 

h~(t, y, x, u) = 0, i=  1, 2 . . . .  , e (4.11) 

may be solved uniquely for e components of u as functions of t, y, x and the remaining r -  
components of u. Let us define 

u a = col. (ul, u z, ..., u~) 

u b = col. (u, +~, u~ + 2 . . . .  , ur) 

u = col. (u a, u b) 
and 

R = col. (hi, h2 . . . . .  h,). 

(4.12) 

(4.13) 
(4.14) 

(4.15) 
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Then, there exists a function 

u ~ = ua(t, y, x, u b) (4.16) 

such that 

R(t, y, x, ua(t, y, x, ub), u b) = 0.  (4.17) 

In view of (4.14) and (4.16) equations (3.2) and (4.1) may be, respectively, written as 

xt(t, y) = f(t ,  y, x, x,~, U a, U b) (4.18) 

H(t , y , x ,  xr~ , U",ub, 2 )=fo( t , y ,x ,  xrk, Ua, ub)+2T(t ,y) f ( t ,y ,x ,  xrk, Uo, ub). (4.19) 

Differentiating (4.17) with respect to x and u b, respectively, gives 

(R~ + R, .  U~)ax = 0 (4.20) 

(R,b + R,~ U~,b)6u b = 0 (4.21) 

from which 

U:bx = - (R.~)- a R,r (4.22) 

U'~b 6U b = - - ( R u ~ ) - * R ~ b b u  b . (4.23) 

It follows from (4.7), (4.22), and (4.23) that the first order variation of H in x, xyk, and u b is 
given by 

6H = [H r - (H,o) T (R,o)- * R~] 6x + [(H,b) r -- (H.o)T(R.o)- ~ R,b] 6u b + (H~,,) T 6 (xr~) (4.24) 
or  

6H = (ax) T {H x -  [(H,,)T(R,o)-I Rx] T} + (hub) T {Hub-- [(H.o)T(R,o)-I R,~] T} 

+ A + ( -  1) k-a (~,,]T {(6x)H~ yk-,} + (-- 1)k(bx) T (Hx~.,rk). 
\ t J y /  

Consequently, after substituting (4.25) into the first variation in Jp, expressed by 

6Jp= fa6FdYa + f ,~ f [6H-2r(6xt)]  dY2dt = 

y)],= + 

+ (6x)T{Hx - [(H,o)T(R,o)-IR~]T+2t+ (-- 1)kH~,k,k} + 
to g~ 

+ (6ub) T { n . b -  [(H.,)T(R,o) -1 Rub] T} + 

+ ( -  1) k-1 { (bx)H~y, yk-i} dOdt,  
O ~ 

and setting 6J equal to zero, conditions (4.3) and (4.5) become 

{ --H:,+[(H.,)T(R.,)-IR,,]T--(--1)k(Hx,~yk) if h i = 0  

--H:,--(-1)k(H~,,yk) if hj= < 0  

if h i= 0 

if h i < 0  

and 
Hub -- [(H,o)T (R,o) -1R,b] T = 0 

/ 4 , = 0  

where i = 1, 2 . . . .  , a and j = a + 1, a + 2, ..., I 
The necessary conditions for Problem P, thus, can be summarized in Theorem 1. 

(4.25) 
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Theorem 1 : 

such 

M. C. Y. Kuo 

I f  (x*, u*) is an extremal solution of Problem P, then there exists a function 

H(t, y, x(t, y), Xy~(t, y), U"(t, y, x, ub), ub(t, y), ).(t, y)) 
=fo (t, y, x(t, y), xrk(t, y), ua(t, y, x, ub), ub(t, y) ) + 

+2(t, y)r f(t ,  y, x(t, y), xr~(t, y), U"(t, y, x, ub), ub(t, y)) 

that 

x, = H A = f  

{--H~+[(H.o)T(R.~ if h i = 0 }  

2 , =  _H_(_ I ) k (H~ , , y~  ) if h i < 0  

H,o-  [(H,,.)T(R.~ - t Rub]r = 0 if hi = 0 ~. 

H , = 0  if h j < O  

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Fx(T, x) = 2(7, y) (4.30) 

H~,kr . . . .  0 for y=dt2 and t = T ,  (4.31) 

with specified x(to, y), x(t, Y)10a, ..., xy~-, (t, Y)loo. (4.32) 

It will be demonstrated in the following that conditions (4.27-4.32) derived in this paper are 
equivalent to that derived from the method of Valentine [6]. Let us introduce a new variable 
p = col. (p", pb) such that 

pa ~_ col. (Pl, P2, ..., P,)= - [ (nu.)T (Rua) - 1IT > 0 (4.33) 

and 

pb = CO1. (p~+ 1, P~+Z,'", P,) = 0.  (4.34) 

Then, we immediately have the following Corollary 1. 

Corollary 1: If(x*, u*)is an extremal solution of Problem P and if [(H,b)r(R,b) - 1IT < 0, then, 
there exist continuous vector functions 2(t, y) and p (t, y) defined by (4.33) and (4.34) such that 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

x t = H , = f  

2t = - H x -  (hx)TP-- (-- 1)k(H~,, yk) 

H, + (h,) r p = 0 

F~(T, y) = 2(T, y) 

H~ , , rk - ,=0  for y=0f2 and t = T  

hrpi=O ( i= i ,  2 , . . . , l )  and p > 0  

with specified 

x(to, y), x(t, Y)tm, xy(t, Y)loe . . . . .  xr~-,(t, Y)foe �9 

5. Sufficient Conditions for Problem P 

The sufficient conditions for Problem P are summarized in Theorem 2. 

Theorem 2: 
below hold 

(4.41) 

Let (x*, u*, 2", p*) be the unique solution to (4.35-4.41). I f  three conditions given 
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(1) F is convex in x, 

(2) fo and f r2 are convex in (x, xy~, u), 

(3) h is convex in (x, u), 

then, u*(t, y) is optimal for Problem P. 

(5.a) 

(5.2) 

(5.3) 

Proof: For simplicity we denote f~(t, y, x*, xy*, u*) byfff  and f~(t, y, x, Xyk, u) byf~ (i=0, 1, 
..., n). Similar notations are applied to functions F and hi (i=1, 2 .... .  l). Let 6 x = x - x * ,  
6u=u-u*,  and 6(xrk)= xrk-x*~. Then, 

Jp(x, x,k, u, ~*, p*) -Jp(x* ,  x,*~, u*, ,~*, p*)=  

f = (F-F*)dF2 + (fo-fff')dadt (5.4 / 
to 

(by the convexity of F and fo) 

, = (6x)rLlt=rdf2 + {(6x)r[Hx--(fx)T2 *] 
.Q Zo 

+ (ax,k) ~ [Hx,, - (k,~)~ ~ .1 + (au) ~ [ < -  (L)TX *] ) dadt  

(by the definition of H in (4.1)) 

= fa (ax)TF~"=TdQ+ .ft~fa (6x)r[-2*-(hx)rp*-(- l)k(H~' ' '~)  

-- (fx)r)~*]df2dt + to o {(-1)k-~ [(6x)(Hx,,rk O] 

+ (--1)k(bx)r(H~"'Q}df2dt--ftl (ax' )'(f '')T2*df2dt 

+ f,~f(au)r[--(hu)rp*--(f.) T).*]df2dt 
(by equations (4.7), (4.9), (4.36), and (4.37)) 

= f~ (ax)rLl*=Tda+ f7o f~ (6x)r[--2*--(h~)rP*--(f~)T2*]df2dt 

f ;o X fo , T (6xyk)r(f~)r2*df2dt + (bu)r{-(h,)rp*-(f~)T2*}df2dt (5.5) 
to to 

(by equation (4.39)). 

Using integration by part and noting that the incremental variation of x with respect to t at to 
is zero (i.e. 6x (to, y) = O) we have 

f 2  f a (ax)T 2* dfadt = f a (6x)T 2*[t= Tdf2 -- f 'i fa (x ' -  x*)T 2* dgadt " (5.6) 

Substituting (5.6) into (5.5) yields 
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Jp(x, x,~, u, ,~*, p*) - Jp(x*, ~,~,* .*, ;~*, p*) >= 

>= j$2[(bx)T(Fx--2*)lt=rdg2 + f 2  f (Xt--x*)r2*df2dt 

+ f tl re-(fxax+f~"a(xY~)+f"au)r ~* dOdt + it~ fo - (h~ax +h"au)T p* dOdt 

> f , i ia(x,-x*)T2*df2dt + f , l f  ( f*- f )r2*dOdt  

+ (h*-h)rp*dOdt (5.7) 
to $2 

(by the convexity of f r2 and h, and (4.38)) 

=f T f (h*-h)Tp*dt2dt (by(4.35)) 
to $2 

~_ 0. (by (3.3)and (4.40)). 

This completes the proof. 

6. Duality 

Consider the following two problems: 

Primal Problem P 
Minimize 

T 

Jp= f$2F(x(T, Y), T)dO + f,O f ro ' t ,  y,x, xr~,u)dOdt ,6.1) 

subject to 

x t = f(t, y, x, xr~, u) (6.2) 
hi(t, y, x, u) <= O i= l, 2, ..., cq c~ + l, ..,, l (6.3) 

with specified 

X(to, y), x(t, Y)lea, xy(t, Y)1o$2,..., Xy~-, (t, Y)[oa , (6.4) 

where we assume that e < I of constraints (6.3) are equalities as given by (4.10). 

Dual Problem D 
Maximize 

J.= F(~(T,y),T)da + {fo(t,y,x, xr~,u)+[f(t,y,x, xy~,u)-xt]r2 
$2 to 

+ hr(t, y, x, u)p}d~dt (6.5) 

subject to 

2t = - Hx-  h~ r p - ( -  1) k (Hx,, yk) (6.6) 

r (6.7) H.+h.p=O 
Fx(T, y) = )~(T, y) (6.8) 

H~y, yk-1 = 0  for y=Of2 and t = T  (6.9) 

p(t, y) >= 0 (6.10) 
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with specified 

X(to, y), x(t, Y)lm, xr(t, y)l~o,-.., xrk-l(t, Y)le~ (6.11) 

where p = col. (pa, pb) is defined by (4.33-4.34). 
Equation (6.5) is the Lagrangian form of the Primal problem P subject to constraints (6.6- 

6.11) which are the first order necessary conditions for a minimal primal solution as stated 
in Corollary 1. 

Theorem 3. If  F, fo, f r  }~ and h possess the same properties as given by (5.1-5.3), then, the 
infimum of Problem P is greater than or equal to the supremum of Problem D. 

Proof: Let (x, u) satisfy (6.2-6.4) and let (x*, u*, 2", p*) satisfy (6.6-6.11). Then, it follows from 
(5.4) and (5.7) that 

~ [F(x(T, y), T)-F(x*(T, y), T)]df2+ 

* u*)]d~dt  + [fo (t, y, x, x,~, u ) - fo  (t, y, x*, x,~, 
to .(2 

>= f t~ f~ (x'-x*)r2*df2 + f t~ .io (f,_f)T),*df2dt + f ,~ f J  h* -h)Tp*df2dt 

> j"i f (f*-x*,r2*d~2dt + f ,~ fa (h*)Vp*dOdt (6,12) 

(by (6.2), (6.3), and (6.10)). 

Here we note that x* ~ f* .  Rearranging (6.12) gives 

f F(x(T,y),T)dO +f~fJo(t,y,x,x,~,u)dg2dt 
f f fo ,u,) >= F(x*(T, y), T)d(2 + {fo(t, Y, x*, Xyk, 

Y2 to 

+ If(t, y, x*, x'k, U*)--x*]T2*+hT(t, y, X*, u*)p*}df2dt. 

Therefore, the infimum of Problem P is greater than or equal to the supremum of Problem D. 
Corollary 1 and Theorem 3 immediately lead to the following results. 

Theorem 4: If(x*, u*) is an optimal solution of Problem P, then, there exist vector functions 
2* ( t, y) and p* ( t, y) such that (x*, u*, 2", p*) is an extremal solution of Problem3) and the extremal 
values of Problem P and Problem D are equal. 

7. Converse Duality 

In this section it is assumed that F,fo,fand h have continuous derivatives up to and including 
the third order with respect to each of their arguments. We shall find conditions under which 
the existence of an extremal solution of Problem D implies the existence of an extremal solution 
to Problem P. 

Let us introduce a vector z = col. (z a, zb), which plays a similar role as the vector p = col. (p", pb) 
defined by (4.33-4.34), such that 

~a = co l .  (~1, ~ 2 , . . . ,  ~) = 0 

~ = co l .  (z~+ 1, ~ + 2 ,  . . . ,  ~ l ) >  0 .  

Then, it is clear that 
pT'c = 0 .  

(7.1) 
(7.2) 

(7.3) 
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Define 3d, H 1, H E, and H 3, respectively, by 

Ja=Sd + {[2t+Hx+hrp+(--1)kHx:yk]r~ 
to U2 

T T + [H.+h, p] rl+prz}df2dt, 
HI=HT~, H2=[(-1)kHx~y~]r~, and H3=HTtl. 

Then, with the aid of (4.7--4.9), we have 

+(- 1)k(bX)r (n~,, yk) ldfJdt 

= f ,i'f~{(--1)k-l (~-~) r[(bx)(H~,,,~-oT ~] 

+ (-  1: 4] / dO dt 
for fixed ) 

xy(t, Y)lm, xy2(t, Y)[e,, xy3(t, Y)lo. ..... xy~-,(t, Y)[e, �9 

Similarly 

f,O f~ (6x'k)T(H2")dQdt fro fa (- 1,2k- c3 T 

+ (-- 1)2k[(cSx)r(H~,,ykx:yQr~]ldadt 

= [(6x)(H.~,,,~-,)T t/] 
to Y~ 

Taking the variations of 6x, ~xy~, 6u, 82 and 6p about x*, xy*, u*, 2" and p* and noting that 
6x (to, y)= 0 we can find that the first variation in d e has the form 

5] e = .( ~ (6x(r, y))T(L--2)It=TdQ 

f'f + (6x)T{H~+hTp+(--1)kH~:y~+[Hx~+ (hTp)~+(--1)kH~:yk~ 
to F2 

+ ( - -  1)kHxx, .  ykd- ( - -  1) 2k Hxykykxylsy~]T~ 

T + [H,~+ (h. p)~+ ( -  1)kH.x:,~]Ttl+2t}dfJdt 

+ (6u)r{H.+hTp+[H~+(hTp),+(--1)kH~,,,k,]T~+[H~.+(hTup)~]rtl}df2dt 
to Y2 

I" T 
+ J,0 f~ (63")r {Hz-x'+(I-Lz)r ~ + ( -  1)k(Hx'~ '~z)r ~ + (H"~)rtl-L}df2dt 

+ ,ida 

+ f t~ fa ( ; ) T  {(6X)[(--1) k-1H*:'~-~+(-I)k- '(H~:,k- ')  T~ 

+ (--1)2k-~(Hx,,,~,,yk-OT~+(--1)k-~(H,~,,y~_OTtl}dQdt. 
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The necessary conditions for Problem D, obtained by setting the first variation in Jd equal to 
zero, are 

L ( x ( T ,  y), T) = 2(T, y) (7.4) 

Hx+hr~p+ ( -  1)k(Hx,,yk)+ EHxx+ (hr~p)~+ ( -  1)k H~,, ykx 

+ [-H,x + (h, r p)~ + ( -  1) k H,,x, , ,,] r t/ = -- 2t (7.5) 

hu p +  = H,+ r [H~u+(hr~p),+(-1)kHx,~y~,]r4+[H,,,+(hr~p),]rtl 0 (7.6) 

Hx - x t + (H~x) r 4 + ( - 1) k (Hx,, yk z)r 4 + (H,x) T q = 4t (7.7) 

4(to, Y) = 4( r ,  y )=  0 (7.S) 

h+hx4+h, t l+z  = 0 (7.9) 

Hx,, ,~-, + (Hxx,, y~ 1)r4 + ( -  1)k (Hx,k y~x,~ y~-1)r4 
+(H,~,~yk-,)rtl=O for y=~?(2 and t = r  (7.10) 

Conditions in (4.34), (7.1), (7.5-7.7), and (7.9), together with (6.6-6.7) comprise a set of3n + 2r + 21 
equations which can be utilized to solve 3n + 2r + 2I variables x, 2, 4, u, tl, p and z with initial 
and boundary conditions given by (6.9), (6.11), (7.4), (7.8), and (7.10). 

Theorem 5. If(x*, u*, 2", p*) is an extremaI solution for Problem D such that the matrix 

F M u  M'2~ (7.11) 
M = LM21 ME2J 

is nonsingular for all t ~ [t o, T] and y ~ ~, where 

(h, p)~+ ( -  1)kH,~,~ ,~]r Mlz=[Hux  + r 

M2~ = [H~, + (h~ p),, + ( -  1)k H~,~ y,~,,]r 
= [H,, + (h, p),] , M22 T T 

and if conditions (5.1-5.3) are held for F, f o , f r  2, and h, then (x*, u*) is an optimal solution for 
Problem P and the extremal values Of dp and Jd are equal. 

Proof: Since (x*, u*, 2", p*) is an extremal solution for Problem D it follows from (6.6), (6.7), 
(7.1-7.3), and (7.5-7.6)that 

+ [H,~+ (hrp)x+ ( -  1)kH,~,~y~]Ttl = 0 (7.12) 

l k H  r H T T [H~,+(hrp) ,+( - ) ~,,y~,] 4 + [  , , + ( h , p ) , ]  11=0 (7.13) 

v (t, y) > 0 (7.14) 

zip ~ = 0 i= 1, 2 . . . . .  I . (7.15) 

Since M is nonsingular we conclude that  ~ = ~/= 0, for t e [to, T] and y ~ ~, is the only solution of 
(7.12-7.13). Equations (7.7) and (7.9) now become 

f - x t = O  (7.16) 
h = - z  =< 0 (7.17) 

in view of (7.14) and (4.1). 
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Hence (x*, u*) satisfies the constraints of Problem P. Also, equations (7.15) and (7.17) imply 
that 

pTh = 0.  (7.18) 

The theorem now follows from (7.16-7.18), (6.1), (6.5), and Theorem 3. 

Remark: For convexity of F, fo,fT}~, and h the condition that the matrix M be nonsingular 
is equivalent to the condition that M be positive definite. 

8 .  E x a m p l e  

The mathematical model for a temperature x (t, y) variation in a slab, with both faces insulated 
at y = 0 and y = n and with initial temperature Xo (y), may be described by 

xt(t, y)= cxy2(t, y) + u(t, y), (t, y)e Q = (0, T) x (0, n) 

x (O,y)=xo(y  ), y~(O,n), xo~R 1 

xy(t, Y)lr=0 --- xy(t, y)ly=, = 0,  

where x, = gx/3t, xr2 = ~2x/Oy2, and u(t, y) is a source of heat in Q with 

[u(t, Y)] < L (L is a positive constant) 

and c is the thermal conductivity. 

Problem P : Minimize 

1 fT (n Ix2( t' Y)+ru2( t, y)]dydt (8.1) 
JP-= 2ao3o 

subject to 

X t ~ -  C X y 2  "3 I- I.~ 

hl = u - L  <O 

h 2 =  - u - L  <O 

with specified 

x (0, y) = Xo (y) 
and 

xr(t, 0) = x~(t, n) = 0 

where r is a given constant. 

Problem D : Maximize 

Ja = [ �89 +h2P2]dydt (8.2) 
o o 

subject to 

~'t = - -  X - -  C)~y2 

ru+'~+Pl -P2  = 0 

pl >->_O, p2>O 

with initial and boundary conditions 

2(T, y) = 0,  2y(t, y)[~ = 0 ,  x(0, y) = xo(y), xy(t, Y)I~ = 0.  

It can be shown that the matrix M in this example has the form 
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M -= [M21 M22.J = 

It is clear that M is nonsingular if r > 0. 
Let (x*, u*, 2*, p*) be the extremal solution to Problem D. Then, according to Theorem 5 

(x*, u*) is the optimal solution to Problem P if r >0. The condition that r > 0 to achieve the 
optimal solution for Problem P is similar to that of the minimum energy problem in the 
lumped parameter systems [7], where it is required that the matrix R in the performance index 

1[ '1 J [x (t)Q(t)x(t)+uT(t)R(t)u(t)]dt 
--,I tO 

be positive definite for t~ [to, tl]. 

9. Conclusion 

The main contribution of this paper is to develop dual and converse dual theorems for a wide 
class of distributed parameter systems. The dual theorem gives conditions under which an 
extremal solution of the primal control problem in'the distributed systems yields a solution of 
the corresponding dual. The converse duality, on the other hand, gives conditions under which 
a solution of the dual problem yields a solution of the control problem. An example for the 
applications of the theory is illustrated. 
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